Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Insects ; 15(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38535351

RESUMO

The sand fly, Phlebotomus papatasi (Scopoli, 1786), is a major vector for Leishmania major in the Middle East, which has impacted human health and US military operations in the area, demonstrating the need to develop effective sand fly control and repellent options. Here, we report the results of spatial repellency and avoidance experiments in a static air olfactometer using the female P. papatasi testing essential oils of Lippia graveolens (Mexican oregano), Pimenta dioica (allspice), Amyris balsamifera (amyris), Nepeta cataria (catnip), Mentha piperita (peppermint), and Melaleuca alternifolia (tea tree); the 9-12 carbon saturated fatty acids (nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid); and the synthetic repellents DEET and IR3535. The materials applied at 1% exhibited varying activity levels but were not significantly different in mean repellency and avoidance from DEET and IR3535, except in regards to nonanoic acid. Some materials, particularly nonanoic and undecanoic acids, produced sand fly mortality. The observed trends in mean repellency over exposure time included the following: (1) P. dioica oil, M. alternifolia oil, decanoic acid, undecanoic acid, DEET, and IR3535 exhibited increasing mean repellency over time; (2) oils of N. cataria, A. balsamifera, M. piperita, and dodecanoic acid exhibited relatively constant mean repellency over time; and (3) L. graveolens oil and nonanoic acid exhibited a general decrease in mean repellent activity over time. These studies identified the essential oils of N. cataria and A. balsamifera as effective spatial repellents at reduced concentrations compared to those of DEET. Additional research is required to elucidate the modes of action and potential synergism of repellents and essential oil components for enhanced repellency activity.

2.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175388

RESUMO

A cDNA encoding a novel cholinesterase (ChE, EC 3.1.1.8) from the larvae of Amblyomma americanum (Linnaeus) was identified, sequenced, and expressed in Sf21 insect cell culture using the baculoviral expression vector pBlueBac4.5/V5-His. The open reading frame (1746 nucleotides) of the cDNA encoded 581 amino acids beginning with the initiation codon. Identical cDNA sequences were amplified from the total RNA of adult tick synganglion and salivary gland, strongly suggesting expression in both tick synganglion and saliva. The recombinant enzyme (rAaChE1) was highly sensitive to eserine and BW284c51, relatively insensitive to tetraisopropyl pyrophosphoramide (iso-OMPA) and ethopropazine, and hydrolyzed butyrylthiocholine (BuTCh) 5.7 times as fast as acetylthiocholine (ATCh) at 120 µM, with calculated KM values for acetylthiocholine (ATCh) and butyrylthiocholine of 6.39 µM and 14.18 µM, respectively. The recombinant enzyme was highly sensitive to inhibition by malaoxon, paraoxon, and coroxon in either substrate. Western blots using polyclonal rabbit antibody produced by immunization with a peptide specific for rAaChE1 exhibited reactivity in salivary and synganglial extract blots, indicating the presence of AaChE1 antigenic protein. Total cholinesterase activities of synganglial or salivary gland extracts from adult ticks exhibited biochemical properties very different from the expressed rAaACh1 enzyme, evidencing the substantial presence of additional cholinesterase activities in tick synganglion and saliva. The biological function of AaChE1 remains to be elucidated, but its presence in tick saliva is suggestive of functions in hydrolysis of cholinergic substrates present in the large blood mean and potential involvement in the modulation of host immune responses to tick feeding and introduced pathogens.


Assuntos
Ixodidae , Carrapatos , Animais , Coelhos , Ixodidae/genética , Amblyomma/genética , Colinesterases/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Acetiltiocolina/metabolismo , Butiriltiocolina/metabolismo , Anticorpos/metabolismo
3.
Parasit Vectors ; 15(1): 359, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203198

RESUMO

BACKGROUND: The cattle fever tick, Rhipicephalus (Boophilus) microplus, is a vector of pathogens causative of babesiosis and anaplasmosis, both highly lethal bovine diseases that affect cattle worldwide. In Ecdysozoa, neuropeptides and their G-protein-coupled receptors play a critical integrative role in the regulation of all physiological processes. However, the physiological activity of many neuropeptides is still unknown in ticks. Periviscerokinins (CAP2b/PVKs) are neuropeptides associated with myotropic and diuretic activities in insects. These peptides have been identified only in a few tick species, such as Ixodes ricinus, Ixodes scapularis and R. microplus, and their cognate receptor only characterized for the last two. METHODS: Expression of the periviscerokinin receptor (Rhimi-CAP2bR) was investigated throughout the developmental stages of R. microplus and silenced by RNA interference (RNAi) in the females. In a first experiment, three double-stranded (ds) RNAs, named ds680-805, ds956-1109 and ds1102-1200, respectively, were tested in vivo. All three caused phenotypic effects, but only the last one was chosen for subsequent experiments. Resulting RNAi phenotypic variables were compared to those of negative controls, both non-injected and dsRNA beta-lactamase-injected ticks, and to positive controls injected with beta-actin dsRNA. Rhimi-CAP2bR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS: Rhimi-CAP2bR transcript expression was detected throughout all developmental stages. Rhimi-CAP2bR silencing was associated with increased female mortality, decreased weight of surviving females and of egg masses, a delayed egg incubation period and decreased egg hatching (P < 0.05). CONCLUSIONS: CAP2b/PVKs appear to be associated with the regulation of female feeding, reproduction and survival. Since the Rhimi-CAP2bR loss of function was detrimental to females, the discovery of antagonistic molecules of the CAP2b/PVK signaling system should cause similar effects. Our results point to this signaling system as a promising target for tick control.


Assuntos
Anaplasmose , Babesiose , Doenças dos Bovinos , Neuropeptídeos , Rhipicephalus , Infestações por Carrapato , Actinas/genética , Animais , Bovinos , RNA Polimerases Dirigidas por DNA/genética , Diuréticos/metabolismo , Feminino , Neuropeptídeos/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptores Acoplados a Proteínas G/genética , Reprodução , Rhipicephalus/fisiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
4.
Parasit Vectors ; 15(1): 252, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35818078

RESUMO

BACKGROUND: Rhipicephalus microplus is the vector of deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. However, R. microplus populations worldwide have developed resistance to available acaricides, prompting the search for novel acaricide targets. G protein-coupled receptors (GPCRs) are involved in the regulation of many physiological processes and have been suggested as druggable targets for the control of arthropod vectors. Arthropod-specific signaling systems of small neuropeptides are being investigated for this purpose. The pyrokinin receptor (PKR) is a GPCR previously characterized in ticks. Myotropic activity of pyrokinins in feeding-related tissues of Rhipicephalus sanguineus and Ixodes scapularis was recently reported. METHODS: The R. microplus pyrokinin receptor (Rhimi-PKR) was silenced through RNA interference (RNAi) in female ticks. To optimize RNAi, a dual-luciferase assay was applied to determine the silencing efficiency of two Rhimi-PKR double-stranded RNAs (dsRNA) prior to injecting dsRNA in ticks to be placed on cattle. Phenotypic variables of female ticks obtained at the endpoint of the RNAi experiment were compared to those of control female ticks (non-injected and beta-lactamase dsRNA-injected). Rhimi-PKR silencing was verified by quantitative reverse-transcriptase PCR in whole females and dissected tissues. RESULTS: The Rhimi-PKR transcript was expressed in all developmental stages. Rhimi-PKR silencing was confirmed in whole ticks 4 days after injection, and in the tick carcass, ovary and synganglion 6 days after injection. Rhimi-PKR silencing was associated with an increased mortality and decreased weight of both surviving females and egg masses (P < 0.05). Delays in repletion, pre-oviposition and incubation periods were observed (P < 0.05). CONCLUSIONS: Rhimi-PKR silencing negatively affected female reproductive fitness. The PKR appears to be directly or indirectly associated with the regulation of female feeding and/or reproductive output in R. microplus. Antagonists of the pyrokinin signaling system could be explored for tick control.


Assuntos
Acaricidas , Doenças dos Bovinos , Neuropeptídeos , Rhipicephalus , Infestações por Carrapato , Acaricidas/farmacologia , Animais , Bovinos , Feminino , Aptidão Genética , RNA de Cadeia Dupla , Rhipicephalus/fisiologia , Infestações por Carrapato/veterinária
5.
Insects ; 12(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34442313

RESUMO

Tick cell culture facilitates research on the biology of ticks and their role as vectors of pathogens that affect humans, domestic animals, and wildlife. Because two-dimensional cell culture doesn't promote the development of multicellular tissue-like composites, we hypothesized that culturing tick cells in a three-dimensional (3-D) configuration would form spheroids or tissue-like organoids. In this study, the cell line BmVIII-SCC obtained from the cattle fever tick, Rhipicephalus (Boophilus) microplus (Canestrini, 1888), was cultured in different synthetic scaffold systems. Growth of the tick cells on macrogelatinous beads in rotating continuous culture system bioreactors enabled cellular attachment, organization, and development into spheroid-like aggregates, with evidence of tight cellular junctions between adjacent cells and secretion of an extracellular matrix. At least three cell morphologies were identified within the aggregates: fibroblast-like cells, small endothelial-like cells, and larger cells exhibiting multiple cytoplasmic endosomes and granular vesicles. These observations suggest that BmVIII-SCC cells adapted to 3-D culture retain pluripotency. Additional studies involving genomic analyses are needed to determine if BmVIII-SCC cells in 3-D culture mimic tick organs. Applications of 3-D culture to cattle fever tick research are discussed.

6.
Rev Bras Parasitol Vet ; 30(2): e002221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076049

RESUMO

This study reports the action of essential oils (EO) from five plants on the activity of native and recombinant acetylcholinesterases (AChE) from Rhipicephalus microplus. Enzyme activity of native susceptible AChE extract (S.AChE), native resistant AChE extract (R.AChE), and recombinant enzyme (rBmAChE1) was determined. An acetylcholinesterase inhibition test was used to verify the effect of the EO on enzyme activity. EO from Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var.dulcis inhibited the activity of S.AChE and R.AChE. Oils from the two Citrus species inhibited S.AChE and R.AChE in a similar way while showing greater inhibition on R.AChE. The oil from E. globulus inhibited native AChE, but no difference was observed between the S.AChE and R.AChE; however, 71% inhibition for the rBmAChE1 was recorded. Mentha piperita oil also inhibited S.AChE and R.AChE, but there was significant inhibition at the highest concentration tested. Cymbopogon winterianus oil did not inhibit AChE. Further studies are warranted with the oils from the two Citrus species that inhibited R.AChE because of the problem with R. microplus resistant to organophosphates, which target AChE. C. winterianus oil can be used against R. microplus populations that are resistant to organophosphates because its acaricidal properties act by mechanism(s) other than AChE inhibition.


Assuntos
Acaricidas , Inibidores da Colinesterase/farmacologia , Cymbopogon , Óleos Voláteis , Rhipicephalus/enzimologia , Acaricidas/farmacologia , Acetilcolinesterase , Animais , Larva , Óleos Voláteis/farmacologia
7.
Rev. bras. parasitol. vet ; 30(2): e002221, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1251367

RESUMO

Abstract This study reports the action of essential oils (EO) from five plants on the activity of native and recombinant acetylcholinesterases (AChE) from Rhipicephalus microplus. Enzyme activity of native susceptible AChE extract (S.AChE), native resistant AChE extract (R.AChE), and recombinant enzyme (rBmAChE1) was determined. An acetylcholinesterase inhibition test was used to verify the effect of the EO on enzyme activity. EO from Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var.dulcis inhibited the activity of S.AChE and R.AChE. Oils from the two Citrus species inhibited S.AChE and R.AChE in a similar way while showing greater inhibition on R.AChE. The oil from E. globulus inhibited native AChE, but no difference was observed between the S.AChE and R.AChE; however, 71% inhibition for the rBmAChE1 was recorded. Mentha piperita oil also inhibited S.AChE and R.AChE, but there was significant inhibition at the highest concentration tested. Cymbopogon winterianus oil did not inhibit AChE. Further studies are warranted with the oils from the two Citrus species that inhibited R.AChE because of the problem with R. microplus resistant to organophosphates, which target AChE. C. winterianus oil can be used against R. microplus populations that are resistant to organophosphates because its acaricidal properties act by mechanism(s) other than AChE inhibition.


Resumo Este estudo relata a ação de óleos essenciais de cinco plantas na atividade de acetilcolinesterases (AChE) nativas e recombinantes de Rhipicephalus microplus. A atividade enzimática do extrato de acetilcolinesterase nativa suscetível (S.AChE) e resistente (R.AChE) e da enzima recombinante (rBmAChE1) foi determinada. Um teste de inibição da AChE foi utilizado, para verificar o efeito dos óleos essenciais sobre a atividade enzimática. Óleos essenciais de Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var. dulcis inibiram a atividade de S.AChE e R.AChE. Os óleos das duas espécies de Citrus inibiram S.AChE e R.AChE de maneira semelhante, mas mostraram maior inibição sobre R.AChE. O óleo de E. globulus inibiu a AChE nativa, mas sem diferença entre a S.AChE e a R.AChE; no entanto, 71% de inibição para rBmAChE1 foi observada. O óleo de Mentha piperita também inibiu S.AChE e R.AChE, mas houve inibição significativa apenas nas concentrações mais altas testadas. O óleo de Cymbopogon winterianus não inibiu a AChE. Estudos adicionais são necessários com os óleos das duas espécies de Citrus que inibiram a R.AchE, devido ao problema de R. microplus resistente aos organofosforados ter como alvo AChE. O óleo de C. winterianus pode ser usado contra populações de R. microplus, que são resistentes a organofosforados, porque suas propriedades acaricidas agem por mecanismos diferentes.


Assuntos
Animais , Óleos Voláteis/farmacologia , Inibidores da Colinesterase/farmacologia , Cymbopogon , Rhipicephalus/enzimologia , Acaricidas/farmacologia , Acetilcolinesterase , Larva
8.
J Med Entomol ; 57(6): 1679-1685, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32459332

RESUMO

Acetylcholinesterase (AChE) was previously reported to be present in saliva of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini), with proposed potential functions to 1) reduce acetylcholine toxicity during rapid engorgement, 2) modulate host immune responses, and 3) to influence pathogen transmission and establishment in the host. Potential modulation of host immune responses might include participation in salivary-assisted transmission and establishment of pathogens in the host as has been reported for a number of arthropod vector-borne diseases. If the hypothesis that tick salivary AChE may alter host immune responses is correct, we reasoned that similar cholinesterase activities might be present in saliva of additional arthropod vectors. Here, we report the presence of AChE-like activity in the saliva of southern cattle ticks, Rhipicephalus (Boophilus) microplus; the lone star tick, Amblyomma americanum (Linnaeus); Asian tiger mosquitoes, Aedes albopictus (Skuse); sand flies, Phlebotomus papatasi (Scopoli); and biting midges, Culicoides sonorensis Wirth and Jones. Salivary AChE-like activity was not detected for horn flies Haematobia irritans (L.), stable flies Stomoxys calcitrans (L.), and house flies Musca domestica L. Salivary cholinesterase (ChE) activities of arthropod vectors of disease-causing agents exhibited various Michaelis-Menten KM values that were each lower than the KM value of bovine serum AChE. A lower KM value is indicative of higher affinity for substrate and is consistent with a hypothesized role in localized depletion of host tissue acetylcholine potentially modulating host immune responses at the arthropod bite site that may favor ectoparasite blood-feeding and alter host defensive responses against pathogen transmission and establishment.


Assuntos
Vetores Artrópodes/enzimologia , Colinesterases/metabolismo , Dípteros/enzimologia , Carrapatos/enzimologia , Animais , Feminino , Masculino , Saliva/enzimologia
9.
Vet Parasitol ; 280: 109090, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32208306

RESUMO

The Rhipicephalus (Boophilus) microplus tick is the main ectoparasite of cattle in tropical and subtropical regions worldwide. Resistance to chemical acaricides has become widespread affirming the need for new drugs to tick control. Terpenes have become a promising alternative for cattle tick control, however the mechanism of action of these compounds is still controversial. Inhibition of acetylcholinesterase (AChE) is a well established mechanism of action of organophosphate and carbamate acaricides, but the possible action of terpenes on tick AChEs has seldom been studied in resistant and sensitive strains of R. (B.) microplus. The aim of the present study was to evaluate terpene inhibition of AChE from resistant and sensitive strains of R. (B.) microplus in correlation with their acaricidal activity. Among the terpenes used in the present study, p-cymene, thymol, carvacrol, and citral displayed acaricidal activity with LC50 of 1.75, 1.54, 1.41, and 0.38 mg.mL-1 for the susceptible strain, and LC50 of 1.40, 1.81, 1.10, and 1.13 mg.mL-1 for the resistant strain. Thymol and carvacrol inhibited the AChE of the susceptible strain larvae with IC50 of 0.93 and 0.04 mg.mL-1, respectively. The IC50 exhibited by eucalyptol, carvacrol and thymol for AChE of the resistant strain larvae were 0.36, 0.28, and 0.13 mg.mL-1, respectively. This was the first study to investigate the action of terpenes on AChE from susceptible and resistant R. (B.) microplus. As not all terpenes with acaridical activity showed AChE inhibition, the participation of AChE in the acaricidal activity of terpenes needs further investigation.


Assuntos
Acaricidas , Inibidores da Colinesterase , Rhipicephalus , Terpenos , Controle de Ácaros e Carrapatos , Animais , Feminino , Larva/crescimento & desenvolvimento , Rhipicephalus/crescimento & desenvolvimento
10.
J Med Entomol ; 57(4): 1301-1304, 2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953543

RESUMO

Maintenance of laboratory colonies of insects and other arthropod pests offers significant research advantages. The availability, age, sex, housing conditions, nutrition, and relative uniformity over time of biological material for research facilitate comparison of results between experiments that would otherwise be difficult or impossible. A laboratory research colony of Phlebotomus papatasi (Scopoli), old world sand flies, was maintained with high-colony productivity for a number of years, but within a relatively short (4-6 mo) time period, colony productivity declined from over 10,000 flies per week to less than 100 per week. Mites and nematodes were both visible in the larval medium; however, the mites had been present throughout high productivity periods; therefore, it seemed reasonable to investigate the nematodes. PCR amplification of 18S rRNA yielded a clean cDNA sequence identified by BLAST search as Procephalobus sp. 1 WB-2008 (Rhabditida: Panagrolaimidae) small subunit ribosomal RNA gene, GenBank EU543179.1, with 475/477 nucleotide identities. Nematode samples were collected and identified as Tricephalobus steineri, (Andrássy, 1952) Rühm, 1956 (Rhabditida: Panagrolaimidae) based on morphological characteristics of the esophagus and the male copulatory apparatus. Mites (Tyrophagus putrescentiae [Acariformes: Acaridae]) may have played an additional predatory role in the loss of sand fly colony productivity. We hypothesized that the origin of the nematode infestation was rabbit dung from a local rabbitry used in preparation of the larval medium. Colony productivity was fully restored within 3 mo (two sand fly generational periods) by replacement of the rabbit dung from a clean source for use to prepare sand fly larval medium.


Assuntos
Interações Hospedeiro-Parasita , Phlebotomus/fisiologia , Phlebotomus/parasitologia , Rabditídios/fisiologia , Animais , Feminino , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , Masculino , Phlebotomus/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Dinâmica Populacional , RNA de Helmintos/análise , RNA Ribossômico 18S/análise
11.
J Med Entomol ; 56(5): 1318-1323, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31102447

RESUMO

The southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini), transmits bovine babesiosis and anaplasmosis, and is endemic to Mexico, Latin and South America. Rhipicephalus (B.) microplus infestations within the United States are a continuing threat to U.S. cattle producers. An importation barrier between Texas and Mexico keeps the ticks from re-entering the United States. All cattle imported into the United States are dipped in an organophosphate (OP) acaricide and hand inspected for presence of ticks. Tick resistance has developed to most available acaricides, including coumaphos, the OP used in the cattle dip vats. OP-resistance can result from one or more mutations in the gene encoding the enzyme, acetylcholinesterase (AChE), resulting in production of an altered AChE resistant to OP inhibition. Previous research reported a large number of BmAChE1 mutations associated with OP resistance. We report baculovirus expression of recombinant tick BmAChE1 (rBmAChE) enzymes containing a single resistance-associated mutation, to assess their contribution to OP inhibition resistance. Surprisingly, of the naturally occurring BmAChE1 resistance-associated mutations, only D188G resulted in markedly reduced sensitivity to OP-inhibition suggesting that OP-insensitivity in BmAChE1 may result from the D188G mutation, or may possibly result from multiple mutations, each contributing a small decrease in OP sensitivity. Furthermore, an OP-insensitivity mutation (G119S) found in mosquitoes was expressed in rBmAChE1, resulting in 500-2000-fold decreased sensitivity to OP inhibition. Recombinant BmAChE1 with the G119S mutation demonstrated the lack of any structural prohibition to broad and high-level OP-insensitivity, suggesting potential increases in tick OP-resistance that would threaten the U.S. importation barrier to ticks.


Assuntos
Acaricidas/farmacologia , Acetilcolinesterase/genética , Baculoviridae/genética , Resistência a Medicamentos/genética , Organofosfatos/farmacologia , Mutação Puntual , Rhipicephalus/genética , Acetilcolinesterase/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Expressão Gênica , Rhipicephalus/enzimologia
12.
Int J Parasitol ; 49(3-4): 287-299, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30673587

RESUMO

The cattle fever tick, Rhipicephalus microplus (Canestrini) (Acari: Ixodidae), is a one-host tick that infests primarily cattle in tropical and sub-tropical regions of the world. This species transmits deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. Although R. microplus was eradicated in the USA, tick populations in Mexico and South America have acquired resistance to many of the applied acaricides. Recent acaricide-resistant tick reintroductions detected in the U.S. underscore the need for novel tick control methods. The octopamine and tyramine/octopamine receptors, both G protein-coupled receptors (GPCR), are believed to be the main molecular targets of the acaricide amitraz. This provides the proof of principle that investigating tick GPCRs, especially those that are invertebrate-specific, may be a feasible strategy for discovering novel targets and subsequently new anti-tick compounds. The R. microplus leucokinin-like peptide receptor (LKR), also known as the myokinin- or kinin receptor, is such a GPCR. While the receptor was previously characterized in vitro, the function of the leucokinin signaling system in ticks remains unknown. In this work, the LKR was immunolocalized to the periphery of the female midgut and silenced through RNA interference (RNAi) in females. To optimize RNAi experiments, a dual-luciferase system was developed to determine the silencing efficiency of LKR-double stranded RNA (dsRNA) constructs prior to testing those in ticks placed on cattle. This assay identified two effective dsRNAs. Silencing of the LKR with these two validated dsRNA constructs was verified by quantitative real time PCR (qRT-PCR) of female tick dissected tissues. Silencing was significant in midguts and carcasses. Silencing caused decreases in weights of egg masses and in the percentages of eggs hatched per egg mass, as well as delays in time to oviposition and egg hatching. A role of the kinin receptor in tick reproduction is apparent.


Assuntos
Proteínas de Artrópodes/análise , Proteínas de Artrópodes/metabolismo , Trato Gastrointestinal/química , Aptidão Genética , Receptores de Neuropeptídeos/análise , Receptores de Neuropeptídeos/metabolismo , Rhipicephalus/química , Rhipicephalus/fisiologia , Animais , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/genética , Feminino , Inativação Gênica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/genética
13.
Chem Biol Interact ; 263: 1-6, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986436

RESUMO

An outbreak of the southern cattle tick, Rhipicephalus (Boophilus) microplus, (Canestrini), in the United States would have devastating consequences on the cattle industry. Tick populations have developed resistance to current acaricides, highlighting the need to identify new biochemical targets along with new chemistry. Furthermore, acaricide resistance could further hamper control of tick populations during an outbreak. Botanically-based compounds may provide a safe alternative for efficacious control of the southern cattle tick. We have developed a heterologous expression system that stably expresses the cattle tick's tyramine receptor with a G-protein chimera, producing a system that is amenable to high-throughput screening. Screening an in-house terpenoid library, at two screening concentrations (10 µM and 100 µM), has identified four terpenoids (piperonyl alcohol, 1,4-cineole, carvacrol and isoeugenol) that we believe are positive modulators of the southern cattle tick's tyramine receptor.


Assuntos
Acaricidas/metabolismo , Óleos Voláteis/química , Receptores de Amina Biogênica/metabolismo , Terpenos/metabolismo , Carrapatos/enzimologia , Acaricidas/química , Acaricidas/toxicidade , Animais , Células CHO , Bovinos , Cricetinae , Cricetulus , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica , Receptores de Amina Biogênica/antagonistas & inibidores , Receptores de Amina Biogênica/genética , Terpenos/química , Terpenos/toxicidade , Carrapatos/efeitos dos fármacos
14.
J Med Entomol ; 53(3): 500-504, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26794231

RESUMO

The southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini), is the most economically important cattle ectoparasite in the world. Rhipicephalus microplus and Rhipicephalus annulatus (Say) continue to threaten U.S. cattle producers despite eradication and an importation barrier based on inspection, dipping of imported cattle in organophosphate (OP) acaricide, and quarantine of infested premises. OP acaricides inhibit acetylcholinesterase (AChE), essential to tick central nervous system function. Unlike vertebrates, ticks possess at least three genes encoding AChEs, differing in amino acid sequence and biochemical properties. Genomic analyses of R. microplus and the related tick, Ixodes scapularis, suggest that ticks contain many genes encoding different AChEs. This work is the first report of a salivary cholinesterase (ChE) activity in R. microplus, and discusses complexity of the cholinergic system in ticks and significance of tick salivary ChE at the tick-host interface. It further provides three hypotheses that the salivary ChE plausibly functions 1) to reduce presence of potentially toxic acetylcholine present in the large bloodmeal imbibed during rapid engorgement, 2) to modulate the immune response (innate and/or acquired) of the host to tick antigens, and 3) to influence transmission and establishment of pathogens within the host animal. Ticks are vectors for a greater number and variety of pathogens than any other parasite, and are second only to mosquitoes (owing to malaria) as vectors of serious human disease. Saliva-assisted transmission (SAT) of pathogens is well-known; however, the salivary components participating in the SAT process remain to be elucidated.


Assuntos
Proteínas de Artrópodes/imunologia , Doenças dos Bovinos/parasitologia , Colinesterases/imunologia , Rhipicephalus/enzimologia , Infestações por Carrapato/parasitologia , Animais , Proteínas de Artrópodes/genética , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/fisiopatologia , Colinesterases/genética , Interações Hospedeiro-Parasita , Fatores Imunológicos/imunologia , Rhipicephalus/genética , Rhipicephalus/imunologia , Glândulas Salivares/enzimologia , Infestações por Carrapato/imunologia , Infestações por Carrapato/fisiopatologia
15.
Insect Biochem Mol Biol ; 63: 47-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25958152

RESUMO

The southern cattle tick (Rhipicephalus (Boophilus) microplus) is a hematophagous external parasite that vectors the causative agents of bovine babesiosis or cattle tick fever, Babesia bovis and B. bigemina, and anaplasmosis, Anaplasma marginale. The southern cattle tick is a threat to the livestock industry in many locations throughout the world. Control methods include the use of chemical acaricides including amitraz, a formamidine insecticide, which is proposed to activate octopamine receptors. Previous studies have identified a putative octopamine receptor from the southern cattle tick in Australia and the Americas. Furthermore, this putative octopamine receptor could play a role in acaricide resistance to amitraz. Recently, sequence data indicated that this putative octopamine receptor is probably a type-1 tyramine receptor (TAR1). In this study, the putative TAR1 was heterologously expressed in Chinese hamster ovary (CHO-K1) cells, and the expressed receptor resulted in a 39-fold higher potency for tyramine compared to octopamine. Furthermore, the expressed receptor was strongly antagonized by yohimbine and cyproheptadine, and mildly antagonized by mianserin and phentolamine. Tolazoline and naphazoline had agonistic or modulatory activity against the expressed receptor, as did the amitraz metabolite, BTS-27271; however, this was only observed in the presence of tyramine. The southern cattle tick's tyramine receptor may serve as a target for the development of anti-parasitic compounds, in addition to being a likely target of formamidine insecticides.


Assuntos
Receptores de Amina Biogênica/metabolismo , Rhipicephalus/metabolismo , Tiramina/metabolismo , Acaricidas/farmacologia , Amidinas/farmacologia , Animais , Células CHO , Cricetulus , Ciproeptadina/farmacologia , Octopamina/metabolismo , Receptores de Amina Biogênica/antagonistas & inibidores , Toluidinas/farmacologia , Ioimbina/farmacologia
16.
Parasit Vectors ; 7: 577, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25491113

RESUMO

BACKGROUND: Phlebotomus papatasi vectors zoonotic cutaneous leishmaniasis. Previous expression of recombinant P. papatasi acetylcholinesterase (PpAChE1) revealed 85% amino acid sequence identity to mosquito AChE and identified synthetic carbamates that effectively inhibited PpAChE1 with improved specificity for arthropod AChEs compared to mammalian AChEs. We hypothesized that the G119S mutation causing high level resistance to organophosphate insecticides in mosquitoes may occur in PpAChE1 and may reduce sensitivity to inhibition. We report construction, expression, and biochemical properties of rPpAChE1 containing the G119S orthologous mutation. METHODS: Targeted mutagenesis introduced the G119S orthologous substitution in PpAChE1 cDNA. Recombinant PpAChE1 enzymes containing or lacking the G119S mutation were expressed in the baculoviral system. Biochemical assays were conducted to determine altered catalytic properties and inhibitor sensitivity resulting from the G119S substitution. A molecular homology model was constructed to examine the modeled structural interference with docking of inhibitors of different classes. Genetic tests were conducted to determine if the G119S orthologous codon existed in polymorphic form in a laboratory colony of P. papatasi. RESULTS: Recombinant PpAChE1 containing the G119S substitution exhibited altered biochemical properties, and reduced inhibition by compounds that bind to the acylation site on the enzyme (with the exception of eserine). Less resistance was directed against bivalent or peripheral site inhibitors, in good agreement with modeled inhibitor docking. Eserine appeared to be a special case capable of inhibition in the absence of covalent binding at the acylation site. Genetic tests did not detect the G119S mutation in a laboratory colony of P. papatasi but did reveal that the G119S codon existed in polymorphic form (GGA + GGC). CONCLUSIONS: The finding of G119S codon polymorphism in a laboratory colony of P. papatasi suggests that a single nucleotide transversion (GGC → AGC) may readily occur, causing rapid development of resistance to organophosphate and phenyl-substituted carbamate insecticides under strong selection. Careful management of pesticide use in IPM programs is important to prevent or mitigate development and fixation of the G119S mutation in susceptible pest populations. Availability of recombinant AChEs enables identification of novel inhibitory ligands with improved efficacy and specificity for AChEs of arthropod pests.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Mutação de Sentido Incorreto , Phlebotomus/enzimologia , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Inibidores da Colinesterase/química , Proteínas de Insetos/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Phlebotomus/química , Phlebotomus/genética
17.
Pestic Biochem Physiol ; 106(3)2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24187393

RESUMO

The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAChE) compared to human and bovine AChE, in order to identify divergent pharmacology that might lead to selective inhibitors. Results indicate that BmAChE has low sensitivity (IC50 = 200 µM) toward tacrine, a monovalent catalytic site inhibitor with sub micromolar blocking potency in all previous species tested. Similarly, a series of bis(n)-tacrine dimer series, bivalent inhibitors and peripheral site AChE inhibitors possess poor potency toward BmAChE. Molecular homology models suggest the rBmAChE enzyme possesses a W384F orthologous substitution near the catalytic site, where the larger tryptophan side chain obstructs the access of larger ligands to the active site, but functional analysis of this mutation suggests it only partially explains the low sensitivity to tacrine. In addition, BmAChE1 and PpAChE have low nanomolar sensitivity to some experimental carbamate anticholinesterases originally designed for control of the malaria mosquito, Anopheles gambiae. One experimental compound, 2-((2-ethylbutyl)thio)phenyl methylcarbamate, possesses >300-fold selectivity for BmAChE1 and PpAChE over human AChE, and a mouse oral LD50 of >1500 mg/kg, thus providing an excellent new lead for vector control.

18.
J Med Entomol ; 50(4): 925-30, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23926794

RESUMO

The stable fly, Stomoxys calcitrans (L.), is a serious ectoparasite affecting animal production and health of both animals and humans. Stable fly control relies largely on chemical insecticides; however, the development of insecticide resistance as well as environmental considerations requires continued discovery research to develop novel control technologies. MicroRNAs (miRNAs) are a class of short noncoding RNAs that have been shown to be important regulators of gene expression across a wide variety of organisms, and may provide an innovative approach with regard to development of safer more targeted control technologies. The current study reports discovery ad initial comparative analysis of 88 presumptive miRNA sequences from the stable fly, obtained using high-throughput sequencing of small RNAs. The majority of stable fly miRNAs were 22-23 nt in length. Many miRNAs were arthropod specific, and several mature miRNA sequences showed greater sequence identity to miRNAs from other blood-feeding dipterans such as mosquitoes rather than to Drosophilids. This initial step in characterizing the stable fly microRNAome provides a basis for further analyses of life stage-specific and tissue-specific expression to elucidate their functional roles in stable fly biology.


Assuntos
MicroRNAs/genética , Muscidae/genética , Animais , Embrião não Mamífero/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Larva/genética , Larva/metabolismo , Masculino , MicroRNAs/metabolismo , Muscidae/metabolismo , Pupa/genética , Pupa/metabolismo
19.
Parasit Vectors ; 6: 31, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23379291

RESUMO

BACKGROUND: Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduce or interrupt Leishmania transmission. Zoonotic cutaneous leishmaniasis caused by L. major is vectored mainly by Phlebotomus papatasi (Scopoli) in Asia and Africa. Organophosphates comprise a class of insecticides used for sand fly control, which act through the inhibition of acetylcholinesterase (AChE) in the central nervous system. Point mutations producing an altered, insensitive AChE are a major mechanism of organophosphate resistance in insects and preliminary evidence for organophosphate-insensitive AChE has been reported in sand flies. This report describes the identification of complementary DNA for an AChE in P. papatasi and the biochemical characterization of recombinant P. papatasi AChE. METHODS: A P. papatasi Israeli strain laboratory colony was utilized to prepare total RNA utilized as template for RT-PCR amplification and sequencing of cDNA encoding acetylcholinesterase 1 using gene specific primers and 3'-5'-RACE. The cDNA was cloned into pBlueBac4.5/V5-His TOPO, and expressed by baculovirus in Sf21 insect cells in serum-free medium. Recombinant P. papatasi acetylcholinesterase was biochemically characterized using a modified Ellman's assay in microplates. RESULTS: A 2309 nucleotide sequence of PpAChE1 cDNA [GenBank: JQ922267] of P. papatasi from a laboratory colony susceptible to insecticides is reported with 73-83% nucleotide identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85% amino acid identity with acetylcholinesterases of Cx. pipiens, Aedes aegypti, and 92% amino acid identity for L. longipalpis. Recombinant P. papatasi AChE1 was expressed in the baculovirus system and characterized as an insect acetylcholinesterase with substrate preference for acetylthiocholine and inhibition at high substrate concentration. Enzyme activity was strongly inhibited by eserine, BW284c51, malaoxon, and paraoxon, and was insensitive to the butyrylcholinesterase inhibitors ethopropazine and iso-OMPA. CONCLUSIONS: Results presented here enable the screening and identification of PpAChE mutations resulting in the genotype for insensitive PpAChE. Use of the recombinant P. papatasi AChE1 will facilitate rapid in vitro screening to identify novel PpAChE inhibitors, and comparative studies on biochemical kinetics of inhibition.


Assuntos
Acetilcolinesterase/genética , Insetos Vetores/enzimologia , Leishmaniose/transmissão , Phlebotomus/enzimologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sequência de Bases , Inibidores da Colinesterase/farmacologia , DNA Complementar/química , DNA Complementar/genética , Feminino , Humanos , Insetos Vetores/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Cinética , Leishmaniose/parasitologia , Masculino , Dados de Sequência Molecular , Organofosfatos/farmacologia , Phlebotomus/genética , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Texas
20.
Chem Biol Interact ; 203(1): 319-22, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23036311

RESUMO

Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer's disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, including biting flies and ticks. However, resistance to OPs in pests affecting animal and human health has compromised control efficacy. OP resistance often results from mutations producing an OP-insensitive AChE. Our studies have demonstrated production of OP-insensitive AChEs in biting flies and ticks. Complementary DNA (cDNA) sequences encoding AChEs were obtained for the horn fly, stable fly, sand fly, and the southern cattle tick. The availability of cDNA sequences enables the identification of mutations, expression and characterization of recombinant proteins, gene silencing for functional studies, as well as in vitro screening of novel inhibitors. The southern cattle tick expresses at least three different genes encoding AChE in their synganglion, i.e. brain. Gene amplification for each of the three known cattle tick AChE genes and expression of multiple alleles for each gene may reduce fitness cost associated with OP-resistance. AChE hydrolyzes the neurotransmitter, acetylcholine, but may have additional roles in physiology and development. The three cattle tick AChEs possess significantly different biochemical properties, and are expressed in neural and non-neural tissues, which suggest separation of structure and function. The remarkable complexity of AChEs in ticks suggested by combining genomic data from Ixodes scapularis with our genetic and biochemical data from Rhipicephalus microplus is suggestive of previously unknown gene duplication and diversification. Comparative studies between invertebrate and vertebrate AChEs could enhance our understanding of structure-activity relationships. Research with ticks as a model system offers the opportunity to elucidate structure-activity relationships for AChE that are important for advances in targeted pest control, as well as potential applications for medicine and biosecurity.


Assuntos
Acetilcolinesterase/metabolismo , Dípteros/enzimologia , Carrapatos/enzimologia , Acaricidas/farmacologia , Acetilcolinesterase/genética , Animais , Bovinos , Inibidores da Colinesterase/farmacologia , Dípteros/efeitos dos fármacos , Dípteros/genética , Resistência a Medicamentos , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Inseticidas/farmacologia , Compostos Organofosforados/farmacologia , Filogenia , Carrapatos/efeitos dos fármacos , Carrapatos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...